Разработка ученых Пермского Политеха поможет усовершенствовать производство деталей для промышленности

Ученые Пермского Политеха разработали математическую модель (система уравнений и программа для их решения), которая учитывает, как ведут себя зерна металла под нагрузкой и как температура и скорость деформации влияют на состояние изделия. Результаты этого фундаментального исследования позволят дать рекомендации по созданию более прочных и долговечных деталей для самолетов, атомных и нефтегазовых станций, сооружений и других ответственных конструкций.

"Главное отличие новой модели от существующих - она точнее предсказывает, как именно меняется структура металла при деформации, за счет того, что описывает индивидуальное поведение каждого зерна. Также учитывается их "наследственность", то есть, когда в материале образуются новые зерна (происходит рекристаллизация), они частично наследуют структурные свойства (например, ориентацию) от старых, а не возникают "случайно", как принимается во многих других моделях. Это важно для более детального предсказания архитектуры материала и, как следствие, прочности всего изделия", - комментирует Дмитрий Безверхий, младший научный сотрудник Лаборатории многоуровневого моделирования конструкционных и функциональных материалов ПНИПУ.

В качестве примера можно привести лопатку газотурбинного двигателя, которая вращается с частотой 10000 оборотов в минуту при температуре порядка 1000°C. Если металл "поведет себя" неправильно, она деформируется или разрушится, что может привести к аварийным последствиям. Учет "наследственности" позволяет более точно подобрать режимы изготовления и эксплуатации, чтобы избежать появления "слабых мест" в конструкции и снизить риск ее отказа в ответственный момент.

"Для проверки эффективности нашей модели мы спрогнозировали поведение чистой меди при сжатии в разных температурных режимах (от 450 до 800°C). Результаты моделирования соответствуют натурным экспериментам. Это говорит о том, что предложенный способ математического описания позволит создавать металлы с заданными свойствами. Например, если нужно сделать авиационный сплав, который выдержит экстремальные режимы работы, модель подскажет способ его обработки и параметры, чтобы получить необходимую структуру", - комментирует Никита Кондратьев, заведующий Лабораторией многоуровневого моделирования конструкционных и функциональных материалов ПНИПУ, кандидат физико-математических наук.

Разработка ученых ПНИПУ даст возможность совершенствовать производство в авиационной, нефтегазовой, строительной и других отраслях промышленности. Новая модель, например, позволит проектировать более легкие и прочные детали двигателей и будет способствовать ускорению разработки новых сплавов без проведения множества пробных натурных испытаний. Все это - за счет точного определения поведения металлов в разных условиях. В будущем такие технологии могут помочь более эффективному проведению цифровизации производства.

По материалам:
https://www.metalinfo.ru/ru/news/171674